Post by Matthew BrettPost by Peter CockI suspect that many of the maintainers of major scipy-ecosystem projects are
aware of these (or other similar) travis wheel caches, but would guess that
the pool of travis-ci python users who weren't aware of these wheel caches
is much much larger. So there will still be a lot of travis-ci clock cycles
saved by manylinux wheels.
-Robert
Yes exactly. Availability of NumPy Linux wheels on PyPI is definitely something
I would suggest adding to the release notes. Hopefully this will help trigger
a general availability of wheels in the numpy-ecosystem :)
In the case of Travis CI, their VM images for Python already have a version
of NumPy installed, but having the latest version of NumPy and SciPy etc
available as Linux wheels would be very nice.
We're very nearly there now.
The latest versions of numpy, scipy, scikit-image, pandas, numexpr,
statsmodels wheels for testing at
http://ccdd0ebb5a931e58c7c5-aae005c4999d7244ac63632f8b80e089.r77.cf2.rackcdn.com/
...
We would love to get any feedback as to whether these work on your machines.
Hi Matthew,
Testing on a 64bit CentOS 6 machine with Python 3.5 compiled
from source under my home directory:
$ python3.5 -m pip install --upgrade pip
Requirement already up-to-date: pip in ./lib/python3.5/site-packages
$ python3.5 -m pip install
--trusted-host=ccdd0ebb5a931e58c7c5-aae005c4999d7244ac63632f8b80e089.r77.cf2.rackcdn.com
--find-links=http://ccdd0ebb5a931e58c7c5-aae005c4999d7244ac63632f8b80e089.r77.cf2.rackcdn.com
numpy scipy
Requirement already satisfied (use --upgrade to upgrade): numpy in
./lib/python3.5/site-packages
Requirement already satisfied (use --upgrade to upgrade): scipy in
./lib/python3.5/site-packages
$ python3.5 -m pip install
--trusted-host=ccdd0ebb5a931e58c7c5-aae005c4999d7244ac63632f8b80e089.r77.cf2.rackcdn.com
--find-links=http://ccdd0ebb5a931e58c7c5-aae005c4999d7244ac63632f8b80e089.r77.cf2.rackcdn.com
numpy scipy --upgrade
Collecting numpy
Downloading http://ccdd0ebb5a931e58c7c5-aae005c4999d7244ac63632f8b80e089.r77.cf2.rackcdn.com/numpy-1.11.0-cp35-cp35m-manylinux1_x86_64.whl
(15.5MB)
100% |████████████████████████████████| 15.5MB 42.1MB/s
Collecting scipy
Downloading http://ccdd0ebb5a931e58c7c5-aae005c4999d7244ac63632f8b80e089.r77.cf2.rackcdn.com/scipy-0.17.0-cp35-cp35m-manylinux1_x86_64.whl
(40.8MB)
100% |████████████████████████████████| 40.8MB 53.6MB/s
Installing collected packages: numpy, scipy
Found existing installation: numpy 1.10.4
Uninstalling numpy-1.10.4:
Successfully uninstalled numpy-1.10.4
Found existing installation: scipy 0.16.0
Uninstalling scipy-0.16.0:
Successfully uninstalled scipy-0.16.0
Successfully installed numpy-1.11.0 scipy-0.17.0
$ python3.5 -c 'import numpy; numpy.test("full")'
Running unit tests for numpy
NumPy version 1.11.0
NumPy relaxed strides checking option: False
NumPy is installed in /home/xxx/lib/python3.5/site-packages/numpy
Python version 3.5.0 (default, Sep 28 2015, 11:25:31) [GCC 4.4.7
20120313 (Red Hat 4.4.7-16)]
nose version 1.3.7
.............................................................................................................................................................................................................................S....................................................................................................................................................................KKK....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................S....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................K.................................................................................................................................................................................................................................................................................................................................................................................................................................................K.......................................................................................................................................................................................................................................................................................................................................................................................................................................................K......................K............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
----------------------------------------------------------------------
Ran 6332 tests in 243.029s
OK (KNOWNFAIL=7, SKIP=2)
So far so good, but there are a lot of deprecation warnings etc from SciPy,
$ python3.5 -c 'import scipy; scipy.test("full")'
Running unit tests for scipy
NumPy version 1.11.0
NumPy relaxed strides checking option: False
NumPy is installed in /home/xxx/lib/python3.5/site-packages/numpy
SciPy version 0.17.0
SciPy is installed in /home/xxx/lib/python3.5/site-packages/scipy
Python version 3.5.0 (default, Sep 28 2015, 11:25:31) [GCC 4.4.7
20120313 (Red Hat 4.4.7-16)]
nose version 1.3.7
[snip]
/home/xxx/lib/python3.5/site-packages/numpy/lib/utils.py:99:
DeprecationWarning: `rand` is deprecated!
numpy.testing.rand is deprecated in numpy 1.11. Use numpy.random.rand instead.
warnings.warn(depdoc, DeprecationWarning)
[snip]
/home/xxx/lib/python3.5/site-packages/scipy/io/arff/tests/test_arffread.py:254:
DeprecationWarning: parsing timezone aware datetimes is deprecated;
this will raise an error in the future
], dtype='datetime64[m]')
/home/xxx/lib/python3.5/site-packages/scipy/io/arff/arffread.py:638:
PendingDeprecationWarning: generator '_loadarff.<locals>.generator'
raised StopIteration
[snip]
/home/xxx/lib/python3.5/site-packages/scipy/sparse/tests/test_base.py:2425:
DeprecationWarning: This function is deprecated. Please call
randint(-5, 5 + 1) instead
I = np.random.random_integers(-M + 1, M - 1, size=NUM_SAMPLES)
[snip]
0-th dimension must be fixed to 3 but got 15
[snip]
----------------------------------------------------------------------
Ran 21407 tests in 741.602s
OK (KNOWNFAIL=130, SKIP=1775)
Hopefully I didn't miss anything important in hand editing the scipy output.
Peter