*Post by Matthew Brett**Post by Peter Cock*I suspect that many of the maintainers of major scipy-ecosystem projects are

aware of these (or other similar) travis wheel caches, but would guess that

the pool of travis-ci python users who weren't aware of these wheel caches

is much much larger. So there will still be a lot of travis-ci clock cycles

saved by manylinux wheels.

-Robert

Yes exactly. Availability of NumPy Linux wheels on PyPI is definitely something

I would suggest adding to the release notes. Hopefully this will help trigger

a general availability of wheels in the numpy-ecosystem :)

In the case of Travis CI, their VM images for Python already have a version

of NumPy installed, but having the latest version of NumPy and SciPy etc

available as Linux wheels would be very nice.

We're very nearly there now.

The latest versions of numpy, scipy, scikit-image, pandas, numexpr,

statsmodels wheels for testing at

http://ccdd0ebb5a931e58c7c5-aae005c4999d7244ac63632f8b80e089.r77.cf2.rackcdn.com/

...

We would love to get any feedback as to whether these work on your machines.

Hi Matthew,

Testing on a 64bit CentOS 6 machine with Python 3.5 compiled

from source under my home directory:

$ python3.5 -m pip install --upgrade pip

Requirement already up-to-date: pip in ./lib/python3.5/site-packages

$ python3.5 -m pip install

--trusted-host=ccdd0ebb5a931e58c7c5-aae005c4999d7244ac63632f8b80e089.r77.cf2.rackcdn.com

--find-links=http://ccdd0ebb5a931e58c7c5-aae005c4999d7244ac63632f8b80e089.r77.cf2.rackcdn.com

numpy scipy

Requirement already satisfied (use --upgrade to upgrade): numpy in

./lib/python3.5/site-packages

Requirement already satisfied (use --upgrade to upgrade): scipy in

./lib/python3.5/site-packages

$ python3.5 -m pip install

--trusted-host=ccdd0ebb5a931e58c7c5-aae005c4999d7244ac63632f8b80e089.r77.cf2.rackcdn.com

--find-links=http://ccdd0ebb5a931e58c7c5-aae005c4999d7244ac63632f8b80e089.r77.cf2.rackcdn.com

numpy scipy --upgrade

Collecting numpy

Downloading http://ccdd0ebb5a931e58c7c5-aae005c4999d7244ac63632f8b80e089.r77.cf2.rackcdn.com/numpy-1.11.0-cp35-cp35m-manylinux1_x86_64.whl

(15.5MB)

100% |████████████████████████████████| 15.5MB 42.1MB/s

Collecting scipy

Downloading http://ccdd0ebb5a931e58c7c5-aae005c4999d7244ac63632f8b80e089.r77.cf2.rackcdn.com/scipy-0.17.0-cp35-cp35m-manylinux1_x86_64.whl

(40.8MB)

100% |████████████████████████████████| 40.8MB 53.6MB/s

Installing collected packages: numpy, scipy

Found existing installation: numpy 1.10.4

Uninstalling numpy-1.10.4:

Successfully uninstalled numpy-1.10.4

Found existing installation: scipy 0.16.0

Uninstalling scipy-0.16.0:

Successfully uninstalled scipy-0.16.0

Successfully installed numpy-1.11.0 scipy-0.17.0

$ python3.5 -c 'import numpy; numpy.test("full")'

Running unit tests for numpy

NumPy version 1.11.0

NumPy relaxed strides checking option: False

NumPy is installed in /home/xxx/lib/python3.5/site-packages/numpy

Python version 3.5.0 (default, Sep 28 2015, 11:25:31) [GCC 4.4.7

20120313 (Red Hat 4.4.7-16)]

nose version 1.3.7

.............................................................................................................................................................................................................................S....................................................................................................................................................................KKK....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................S....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................K.................................................................................................................................................................................................................................................................................................................................................................................................................................................K.......................................................................................................................................................................................................................................................................................................................................................................................................................................................K......................K............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

----------------------------------------------------------------------

Ran 6332 tests in 243.029s

OK (KNOWNFAIL=7, SKIP=2)

So far so good, but there are a lot of deprecation warnings etc from SciPy,

$ python3.5 -c 'import scipy; scipy.test("full")'

Running unit tests for scipy

NumPy version 1.11.0

NumPy relaxed strides checking option: False

NumPy is installed in /home/xxx/lib/python3.5/site-packages/numpy

SciPy version 0.17.0

SciPy is installed in /home/xxx/lib/python3.5/site-packages/scipy

Python version 3.5.0 (default, Sep 28 2015, 11:25:31) [GCC 4.4.7

20120313 (Red Hat 4.4.7-16)]

nose version 1.3.7

[snip]

/home/xxx/lib/python3.5/site-packages/numpy/lib/utils.py:99:

DeprecationWarning: `rand` is deprecated!

numpy.testing.rand is deprecated in numpy 1.11. Use numpy.random.rand instead.

warnings.warn(depdoc, DeprecationWarning)

[snip]

/home/xxx/lib/python3.5/site-packages/scipy/io/arff/tests/test_arffread.py:254:

DeprecationWarning: parsing timezone aware datetimes is deprecated;

this will raise an error in the future

], dtype='datetime64[m]')

/home/xxx/lib/python3.5/site-packages/scipy/io/arff/arffread.py:638:

PendingDeprecationWarning: generator '_loadarff.<locals>.generator'

raised StopIteration

[snip]

/home/xxx/lib/python3.5/site-packages/scipy/sparse/tests/test_base.py:2425:

DeprecationWarning: This function is deprecated. Please call

randint(-5, 5 + 1) instead

I = np.random.random_integers(-M + 1, M - 1, size=NUM_SAMPLES)

[snip]

0-th dimension must be fixed to 3 but got 15

[snip]

----------------------------------------------------------------------

Ran 21407 tests in 741.602s

OK (KNOWNFAIL=130, SKIP=1775)

Hopefully I didn't miss anything important in hand editing the scipy output.

Peter