Charles R Harris
2016-12-19 02:24:50 UTC
Hi All,
I'm please to annouce the release of NumPy 1.11.3. This is a one bug fix
release to take care of a bug that could corrupt large files opened in
append mode and then used as an argument to ndarray.tofile. Thanks to Pavel
Potocek for the fix.
Cheers,
Chuck
-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1
==========================
NumPy 1.11.3 Release Notes
==========================
Numpy 1.11.3 fixes a bug that leads to file corruption when very large files
opened in append mode are used in ``ndarray.tofile``. It supports Python
versions 2.6 - 2.7 and 3.2 - 3.5. Wheels for Linux, Windows, and OS X can be
found on PyPI.
Contributors to maintenance/1.11.3
==================================
A total of 2 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.
- - Charles Harris
- - Pavel Potocek +
Pull Requests Merged
====================
- - `#8341 <https://github.com/numpy/numpy/pull/8341>`__: BUG: Fix
ndarray.tofile large file corruption in append mode.
- - `#8346 <https://github.com/numpy/numpy/pull/8346>`__: TST: Fix tests in
PR #8341 for NumPy 1.11.x
Checksums
=========
MD5
~~~
f36503c6665701e1ca0fd2953b6419dd
numpy-1.11.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
ada01f12b747c0669be00be843fde6dd
numpy-1.11.3-cp27-cp27m-manylinux1_i686.whl
e3f454dc204b90015e4d8991b12069fb
numpy-1.11.3-cp27-cp27m-manylinux1_x86_64.whl
cccfb3f765fa2eb4759590467a5f3fb1
numpy-1.11.3-cp27-cp27mu-manylinux1_i686.whl
479c0c8b50ab0ed4acca0a66887fe74c
numpy-1.11.3-cp27-cp27mu-manylinux1_x86_64.whl
110b93cc26ca556b075316bee81f8652 numpy-1.11.3-cp27-none-win32.whl
33bfb4c5f5608d3966a6600fa3d7623c numpy-1.11.3-cp27-none-win_amd64.whl
81df8e91c06595572583cd67fcb7d68f
numpy-1.11.3-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
194d8903cb3fd3b17af4093089b1a154
numpy-1.11.3-cp34-cp34m-manylinux1_i686.whl
837d9d7c911d4589172d19d0d8fb4eaf
numpy-1.11.3-cp34-cp34m-manylinux1_x86_64.whl
f6b24305ab3edba245106b49b97fd9d7 numpy-1.11.3-cp34-none-win32.whl
2f3fdd08d9ad43304d67c16182ff92de numpy-1.11.3-cp34-none-win_amd64.whl
f90839ad86e3ccda9a409ce93ca1cccc
numpy-1.11.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
3b2268154e405f895402cbd4cbcaad7a
numpy-1.11.3-cp35-cp35m-manylinux1_i686.whl
3d6754274af48c1c19154dd370ddb569
numpy-1.11.3-cp35-cp35m-manylinux1_x86_64.whl
f8b64f46cc0e9a3fc877f24efd5e3b7c numpy-1.11.3-cp35-none-win32.whl
b1a53851dde805a233e6c4eafe116e82 numpy-1.11.3-cp35-none-win_amd64.whl
b8a9dec6901c046edaea706bad1448b1 numpy-1.11.3.tar.gz
aa70cd5bba81b78382694d654ed10036 numpy-1.11.3.zip
SHA256
~~~~~~
5941d3dbd0afed1ecd3746c0371b2a8b79977d084004cc320c2a4cf9d88589d8
numpy-1.11.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
ca37b5bebcc4ebde39dfbff0bda69fdc28785a8ff21155fd7adacf473c7b40dd
numpy-1.11.3-cp27-cp27m-manylinux1_i686.whl
276cbb35b69eb2f0d5f264b7c71bdc1f4e91ecd3125d32cd1839873268239892
numpy-1.11.3-cp27-cp27m-manylinux1_x86_64.whl
1226e259d796207e8ef36762dce139e7da1cc0bb78f5d54e739252acd07834e5
numpy-1.11.3-cp27-cp27mu-manylinux1_i686.whl
674d0c1318890357f27ce3a8939e643eaf55140cfb8e84730aeee1dd769b0c21
numpy-1.11.3-cp27-cp27mu-manylinux1_x86_64.whl
f8b30c76e0f805da7ea641f52c3f6bade55d50a0767f9c89c50e4c42b2a1b34c
numpy-1.11.3-cp27-none-win32.whl
8cd184b0341e1db3a5619c85f875ce511ef0eb7ec01ec320116959a3de77f1b8
numpy-1.11.3-cp27-none-win_amd64.whl
f0824beb03aff58d4062508b1dd4f737f08f5d2369f25a73c2350fe081beab2c
numpy-1.11.3-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
9e4228ac322743dea101a90305ee6d54b4bf82f15d6499e55d1d9cef17bccdbb
numpy-1.11.3-cp34-cp34m-manylinux1_i686.whl
195604fc19a9333f3342fcad93094b6a21bc6e6b28d7bfec14d120cb4391a032
numpy-1.11.3-cp34-cp34m-manylinux1_x86_64.whl
71a6aa8b8c9f666b541208d38b30c84df1666e4cc02fb33b59086aaea10affad
numpy-1.11.3-cp34-none-win32.whl
135586ce1966dbecd9494ba30cb9beca93fad323ef9264c21efc2a0b59e449d2
numpy-1.11.3-cp34-none-win_amd64.whl
cca8af884cbf220656ca2f8f9120a634e5cfb5fdcb0a21fd83ec279cc4f46654
numpy-1.11.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
ab810c942ead3f5988a7bef95dc6e85b586b6e814b83d571dfbca879e245bd45
numpy-1.11.3-cp35-cp35m-manylinux1_i686.whl
7c6eb737dc3d53977c558d57625dfbecd9900a5807ff17edd6842a102cb95c3b
numpy-1.11.3-cp35-cp35m-manylinux1_x86_64.whl
ab2af03dabecb97de27badfa944c56d799774a1fa975d52083197bb81858b742
numpy-1.11.3-cp35-none-win32.whl
dd1800ec19192fd853bc255917eb3ecb34de268551b9c561f36d089023883807
numpy-1.11.3-cp35-none-win_amd64.whl
6e89f41217028452977cddb2a6c614e2210214bf3efb8494e7a9137b26985d41
numpy-1.11.3.tar.gz
2e0fc5248246a64628656fe14fcab0a959741a2820e003bd15538226501b82f7
numpy-1.11.3.zip
I'm please to annouce the release of NumPy 1.11.3. This is a one bug fix
release to take care of a bug that could corrupt large files opened in
append mode and then used as an argument to ndarray.tofile. Thanks to Pavel
Potocek for the fix.
Cheers,
Chuck
-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1
==========================
NumPy 1.11.3 Release Notes
==========================
Numpy 1.11.3 fixes a bug that leads to file corruption when very large files
opened in append mode are used in ``ndarray.tofile``. It supports Python
versions 2.6 - 2.7 and 3.2 - 3.5. Wheels for Linux, Windows, and OS X can be
found on PyPI.
Contributors to maintenance/1.11.3
==================================
A total of 2 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.
- - Charles Harris
- - Pavel Potocek +
Pull Requests Merged
====================
- - `#8341 <https://github.com/numpy/numpy/pull/8341>`__: BUG: Fix
ndarray.tofile large file corruption in append mode.
- - `#8346 <https://github.com/numpy/numpy/pull/8346>`__: TST: Fix tests in
PR #8341 for NumPy 1.11.x
Checksums
=========
MD5
~~~
f36503c6665701e1ca0fd2953b6419dd
numpy-1.11.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
ada01f12b747c0669be00be843fde6dd
numpy-1.11.3-cp27-cp27m-manylinux1_i686.whl
e3f454dc204b90015e4d8991b12069fb
numpy-1.11.3-cp27-cp27m-manylinux1_x86_64.whl
cccfb3f765fa2eb4759590467a5f3fb1
numpy-1.11.3-cp27-cp27mu-manylinux1_i686.whl
479c0c8b50ab0ed4acca0a66887fe74c
numpy-1.11.3-cp27-cp27mu-manylinux1_x86_64.whl
110b93cc26ca556b075316bee81f8652 numpy-1.11.3-cp27-none-win32.whl
33bfb4c5f5608d3966a6600fa3d7623c numpy-1.11.3-cp27-none-win_amd64.whl
81df8e91c06595572583cd67fcb7d68f
numpy-1.11.3-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
194d8903cb3fd3b17af4093089b1a154
numpy-1.11.3-cp34-cp34m-manylinux1_i686.whl
837d9d7c911d4589172d19d0d8fb4eaf
numpy-1.11.3-cp34-cp34m-manylinux1_x86_64.whl
f6b24305ab3edba245106b49b97fd9d7 numpy-1.11.3-cp34-none-win32.whl
2f3fdd08d9ad43304d67c16182ff92de numpy-1.11.3-cp34-none-win_amd64.whl
f90839ad86e3ccda9a409ce93ca1cccc
numpy-1.11.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
3b2268154e405f895402cbd4cbcaad7a
numpy-1.11.3-cp35-cp35m-manylinux1_i686.whl
3d6754274af48c1c19154dd370ddb569
numpy-1.11.3-cp35-cp35m-manylinux1_x86_64.whl
f8b64f46cc0e9a3fc877f24efd5e3b7c numpy-1.11.3-cp35-none-win32.whl
b1a53851dde805a233e6c4eafe116e82 numpy-1.11.3-cp35-none-win_amd64.whl
b8a9dec6901c046edaea706bad1448b1 numpy-1.11.3.tar.gz
aa70cd5bba81b78382694d654ed10036 numpy-1.11.3.zip
SHA256
~~~~~~
5941d3dbd0afed1ecd3746c0371b2a8b79977d084004cc320c2a4cf9d88589d8
numpy-1.11.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
ca37b5bebcc4ebde39dfbff0bda69fdc28785a8ff21155fd7adacf473c7b40dd
numpy-1.11.3-cp27-cp27m-manylinux1_i686.whl
276cbb35b69eb2f0d5f264b7c71bdc1f4e91ecd3125d32cd1839873268239892
numpy-1.11.3-cp27-cp27m-manylinux1_x86_64.whl
1226e259d796207e8ef36762dce139e7da1cc0bb78f5d54e739252acd07834e5
numpy-1.11.3-cp27-cp27mu-manylinux1_i686.whl
674d0c1318890357f27ce3a8939e643eaf55140cfb8e84730aeee1dd769b0c21
numpy-1.11.3-cp27-cp27mu-manylinux1_x86_64.whl
f8b30c76e0f805da7ea641f52c3f6bade55d50a0767f9c89c50e4c42b2a1b34c
numpy-1.11.3-cp27-none-win32.whl
8cd184b0341e1db3a5619c85f875ce511ef0eb7ec01ec320116959a3de77f1b8
numpy-1.11.3-cp27-none-win_amd64.whl
f0824beb03aff58d4062508b1dd4f737f08f5d2369f25a73c2350fe081beab2c
numpy-1.11.3-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
9e4228ac322743dea101a90305ee6d54b4bf82f15d6499e55d1d9cef17bccdbb
numpy-1.11.3-cp34-cp34m-manylinux1_i686.whl
195604fc19a9333f3342fcad93094b6a21bc6e6b28d7bfec14d120cb4391a032
numpy-1.11.3-cp34-cp34m-manylinux1_x86_64.whl
71a6aa8b8c9f666b541208d38b30c84df1666e4cc02fb33b59086aaea10affad
numpy-1.11.3-cp34-none-win32.whl
135586ce1966dbecd9494ba30cb9beca93fad323ef9264c21efc2a0b59e449d2
numpy-1.11.3-cp34-none-win_amd64.whl
cca8af884cbf220656ca2f8f9120a634e5cfb5fdcb0a21fd83ec279cc4f46654
numpy-1.11.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
ab810c942ead3f5988a7bef95dc6e85b586b6e814b83d571dfbca879e245bd45
numpy-1.11.3-cp35-cp35m-manylinux1_i686.whl
7c6eb737dc3d53977c558d57625dfbecd9900a5807ff17edd6842a102cb95c3b
numpy-1.11.3-cp35-cp35m-manylinux1_x86_64.whl
ab2af03dabecb97de27badfa944c56d799774a1fa975d52083197bb81858b742
numpy-1.11.3-cp35-none-win32.whl
dd1800ec19192fd853bc255917eb3ecb34de268551b9c561f36d089023883807
numpy-1.11.3-cp35-none-win_amd64.whl
6e89f41217028452977cddb2a6c614e2210214bf3efb8494e7a9137b26985d41
numpy-1.11.3.tar.gz
2e0fc5248246a64628656fe14fcab0a959741a2820e003bd15538226501b82f7
numpy-1.11.3.zip